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UNIVERSAL EQUATION OF TRANSIENT PLANE JET IN CONCURRENT STREAM 

O. N. Bushmarin, E. Yu. Egorova, 
and N. F. Trubitsyn 

UDC 5 3 2 . 5 2 6 . 2  

An equation is derived and subsequently integrated which is "universal" not only 
with respect to velocity of the concurrent stream and initial conditions of jet 
discharge but also with respect to choice of characteristic scale for the trans- 
verse coordinate. 

A universal equation for a transient laminar jet and a transient gradiental concurrent 
stream of incompressible fluid has been derived in an earlier study [I] without the use of 
any integral relations, i.e., in purely differential form. We will now write this equation 
and the boundary conditions for the dimensionless flow function ~ in the form 

--r~o ~ + - - + a o  ~ an ~ - Z af~a,] 
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qo = qoo 01) for f~.~ = r , j  = gzm = 0 (j ~ O; rn =/= 0); 

rio = r~ o = const,  gzo =-- g~o = const ,  (2 )  

where o(D) is the self-adjoint Schlichting solution for a plane inundated jet. 

In Eq. (I) has been used the following notation: 

B~ Bz5 ( 3 ) 
q9 01, fh~, r u ,  g> , )  - ; r l -  , 

UlmIZ h 

K = [(k -- 1) rol H- (k + n) go,] fh .  -7 fk ,~,+I , 

L --  [ ( i -  1) roi @ (i @ ]) go1] riJ + r i , i+ I '  

M = [lro~ -b (l q- m - -  1) go1] gzm @ gI,,~+I' 

N = [(k - -  1) qo -b (k q- n) glO] fhn @ [h+l ,n '  

P : [ ( i - -  1 ) h  o + (i + / ) & o ]  k~i + r~+ l , p  (4 )  

Q = [lho + (l @ m - -  1) &o] ga,,~ + gz+i ,,~," 

The  s e r i e s  o f  p a r a m e t e r s  i n t r o d u c e d  t o  r e p l a c e  t h e  l o n g i t u d i n a l  c o o r d i n a t e  x a n d  t i m e  t a r e  

w h e r e  z = h a / v .  
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,,z Ox~Ot, n J 

These parameters, containing not only the velocity U of the concurrent stream and the 
excess velocity Uzm at the jet axis as well as their derivatives but also the quantity z re- 
lated to some characteristic jet thickness and the derivatives of z, reflect the dependence 
of the jet development on the characteristics of the concurrent stream and on the initial 
conditions of jet discharge defining the individuality of a jet. Treatment of these parame- 
ters as variables has eliminated, in explicit form, the velocity of the concurrent stream as 
well as the quantities defining the individuality of a jet from Eq. (i) and the boundary con- 
ditions (2). This is what makes the equation universal. A numerical solution for a "seg- 
ment" of this equation, obtained once and for all with only a limited number of parameters re- 
tained, will yield a set of velocity profiles for various combinations of their values. An 
analysis of the velocity profiles makes ~ possible to determine how their form depends on 
these parameters, which is of considerable interest. The velocity profiles can also be used for 
approximate solution of particular problems with the aid of integral equations, for determin- 
ing the characteristic jet width and the axial velocity as functions of time and the longi- 
tudinal coordinate when a specific velocity distribution in the concurrent stream is given, 
also for determining the initial conditions. 

For integrating Eq. (I), one must first determine the numerical value of the normaliz- 
ing constant B. Its value depends on the choice Of scale h(x, t) for the transverse coordi- 
nate [i]. The characteristic values of this scale, which also simplify subsequent calcula- 
tions, can be found from the integral equations such as those of momentum and energy of a jet 
in a concurrent stream. Scales of this kind are [i] 

0 0 

h 2foo + - d~; 
6a : -~-  aq &1 

0 
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It is well known that a favorable choice of one of these scales can play an important role in 
simplifying the solution of particular problems and in making their solutions more accurate, 
especially in the case of transient boundary layers of jets. The optimum scale can only be 
found, however, after the universal equation has been solved with various scales and the re- 
sults compared. For this reason, integrating Eq. (i) with all scale (6) is very important. 

The value of constant B for each scale can be found [i] from the self-adjoint Schlichting 
solution for an inundated jet [2]. We obtain B = 0.943 for h = 61 = ~3, B = 1.414 for h = 
~2, and B = 0.754 for h = ~. 

Accordingly, for each scale the universal equation (I) must be integrated with the cor- 
responding value of constant B. It is possible to avoid this complication, however, and an 
equation can be obtained which is also universal with respect to choice of scale h. 

Let B = I. We will demonstrate that such a value of this constant corresponds to a 
scale equal to any of the characteristic thicknesses 6 i multiplied by some numerical factor. 

o 
Indeed, in the case of a steady inundated jet [2] the characteristic thicknesses 6 i can be 
expressed in the general form 

i/2 
a~ = ~ - -  ~ x~"3(~, = 6~ = ~,~ ~2 = o,  ~ <,  = s / 5 ) .  ( 7 )  

o o 
We n o t e  t h a t  when B i = B, = 3 / / ~ ,  t he  q u a n t i t y  6 i = 6,  = h ,  s e l e c t e d  as s c a l e  f o r  the  t r a n s -  
v e r s e  c o o r d i n a t e  w i l l  make B = l i n  acco rdance  w i t h  the  S c h l i c h t i n g  s o l u t i o n .  I n  o r d e r  to  
establish the relation between 6 o o ~o o , and the characteristic thickness 6i, we let , = zi6 i with 
• standing for some numerical factor. Inserting this relation into experssion (7) with Bi = 

o 3 %~1/2 0 3 % :112 X213 
= - x 2/3, and thus 6 i - . Using the value of fac- B, 3/~2 yields zi6 i ~ ~ • I/~- 

O tor Bi for each thickness 6 i according to relation (7) yields • = z3 = 1.061, • = 0.7071, 
and z4 = 1.326 respectively. It follows that one and the same value of the normalizing con- 
stant (B = i) corresponds to any of the scale values 

l h = h  3 = 1 . 0 6 1 ~ =  1.06183; h~ = 0.70718~; h~ : 1.3268~. (8)  

In this way Eq. (1) appears to be universal not only with respect to velocity of the con- 
current stream and the initial conditions of jet discharge but also with respect to scale h. 
It therefore can be integrated once and for all (in a given approximation) with a definite 
value of the normalizing constant (e.g., B = i) common to various scales. It must be em- 
phasized, however, that the scales h = 6 i under consideration here have been obtained with 
the aid of the integral equations for a jet in a concurrent stream and that, therefore, the 
arbitrariness of the choice of scale is, just as in the case of a boundary layer generally, 
limited by definite requirements. 

In order to solve particular problems, it is necessary to know the values of the charac- 
teristic jet functions H i and to successively stipulate h~ = I~. ~ • ~ I. 2, 3, 4) as the 
scale. Calculations are then made according to the relation Hi==6i//~. =81/• i/• �9 We 
obtain 

H~ = H 3 = 0.943; H2 = 1.414; H~ = 0.754. (9 )  

In this way to each scale in series (8) there corresponds a numerical value of a charac- 
teristic function in series (9). The characteristic functions H i not corresponding to the 
selected scale are variables depending on the parameters. All characteristic functions can 
be found after the universal equation has been solved, the solution being obtained, as has 
been noted earlier, independently of the choice of scale. This permits us to represent all 
Hi's as functions of the parameters. Only in the second stage of the process, solution of a 
particular problem, must one select a specific scale h~=z~8~ from series (8) and equate the 
expression for H i matching the selected scale to the corresponding constant in series (9). 
This equality is an equation and can be used, together with the integral equations of momen- 
tum and energy, for determining ulm(x, t) and z(x, t) with U(x, t) known a priori and with 
specific initial conditions stipulated. In these integral equations as well as in the ex- 
pressionfor function H i it is then necessary to explicate the parameters in accordance with 
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Fig. 1. Calculated characteristic jet 
thickness (a, b) and velocity at jet axis 
(c, d) as functions of time in fixed sec- 
tion (a, c) and as function of longitudi- 
nal coordinate at fixed instant (b, d) 
(all quantities dimensionless): I) ac- 
cording to equations of momentum and en- 
ergy, 2) according to equation of momen- 
tum and expansion of HI = const, 3) accord- 
ing to method [3]; I) buildup, II) decay. 

the velocity of the concurrent stream U(x, t) known, one evaluates the parameters as functions 
of x and t, and thus also the velocity profiles in the jet as functions of these coordinates. 
The solution of the problem is then completed. 

As the universal Eq. (i) was integrated, the flow function ~ was sought in the form of 
a "segment" of a power series in the parameters, with first and second powers as well as de- 
rivatives of all initial parameters in series (5) retained. Upon insertion of the resulting 
polynomial into Eq. (i), in which the same parameters and their derivatives have been re- 
tained, and equating the coefficients of like monomial combinations of parameters, one ob- 
tains a system of ordinary differential equations in the coefficients of this polynomial. A 
numerical solution of these equations on a computer by the method of elimination yielded ac- 
tual values of these coefficients (not shown here), whereupon the form of the characteristic 
functions H i could be determined. For illustration, here are the expressions for the first 
two functions in the linear approximation: 
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H t = 0.943 + 4,827[00 - -  0,939flo - -  5,70 (rio - -  r~o) ~ '  5.70 (gio - -  glO)~ ~, 0,5731ot + 3,327ro~ + 4,938gol, 

Ha = 1.414 - -  1.276foo - -  1,324f~ o - -  5,074 ( r io - -  r~o) + 5,078 (g~o - -  g~o) + 0,818for + 5.184ro~ + 5,329got, ( 1 0 )  

O O where parameter r~o and gto correspond to the Schlichting solution for an inundated jet. 

We note that, after integration of the universal equation, an analysis of the velocity 
profiles in a jet has revealed the following trends: a jet narrows during buildup and widens 
during decay; a concurrent stream narrows a jet, an accelerated stream more andadecelerated 
stream less. 

The particular problem of determining U:m(X, t) and z(x, t) was solved with the aid of 
the integral equations of momentum and energy [I] with a specific scale h selected. In a 
second variant of calculations the integral relation for energy, with a rather intricate 
mathematical structure, was replaced with one of the expansions of H i corresponding to that 
scale and set equal to ~he matching constant in series (9). In the equations to be solved we 
had retained only the terms containing parameters with not higher than first-order deriva- 
tives of U~m and z with respect to x and t. 

Problems of buildup and decay of an inundated jet with an exponentially varying momentum 
I~ e • were also taken into consideration. An analogous but differently formulated problem 
was dealt with by L. A. Bulis et al. [3]. In order to make it possible to compare our solu- 
tion with theirs, we stipulated the initial conditions for U~m and z in accordance with the 
results of their study [3]. 

The systems of two first-order partial differential equations were reduced to dimension- 
less form for integration on a "Nairi-3" computer, with the original system approximated ac- 
cording to the "running" count scheme of first-order accuracy so convenient for solving a 
mixed Cauchy problem. 

The graphs in Fig. 1 depict the results of integration, ~amely the dimensionless axial 
jet velocity ~:m = U~m/U~mo and characteristic jet thickness z = Z/Zo as functions of the di- 
mensionless space coordinate x = (x--xo)/U:moZo and time t = (t--to)/Zo ("0" in the superscript 
refers to the initial instant of jet discharge). Alongside the curves from study [3] there 
are shown here curves depicting the relations based on the solution to two systems of equa- 
tions: (a) integral equations of momentum and energy, (b) integral equation of momentum and 
expansion (i0) of the characteristic function H~ equal to a constant (H~ = 0.943). The main 
trends in development of transient inundated jets are the same according to the different 
methods of calculation. A jet narrows during buildup, its maximum velocity at fixed points 
on the axis increasing with time. A jet widens during decay, its velocity at a fixed point 
on the axis decreasing with time. The basic differences existing between our solution and 
the solution in study [3] are attributable to the fact that both methods are approximate, 
their truthfulness being verifiable only through comparison with experimental data. No such 
experimental data pertaining to laminar jets have been published so far. 

NOTATION 

x, longitudinal coordinate; y, transverse coordinate; t, time; ~, dimensionless coordi- 
nate; U(x, t), velocity of the concurrent stream; 4, flow function; ~, dimensionless flow 
function; Ulm, axial excess velocity in the jet; h, scale of the transverse coordinate; z = 
h2/~; ~, kinematic viscosity; K, L, M, N, P, Q, functionals; ~kn, rij, g~m, parameters; ~i, 
characteristic jet thicknesses; Hi, characteristic functions; B, normalizing constant; and 
B, constant in the Schlichting solution. 
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